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Developing tissues are patterned in space and time; this enables them to

differentiate their cell types and form complex structures to support differ-

ent body plans. Although space and time are two independent entities,

there are many examples of spatial patterns that originate from temporal

ones. The most prominent example is the expression of the genes hunch-

back, Kr€uppel, pdm, and castor, which are expressed temporally in the neu-

ral stem cells of the Drosophila ventral nerve cord and spatially along the

anteroposterior axis of the blastoderm stage embryo. In this Viewpoint, we

investigate the relationship between space and time in specific examples of

spatial and temporal patterns with the aim of gaining insight into the evo-

lutionary history of patterning.

Time and space in development

Living organisms are dynamic entities that are pat-

terned in time and space. These two axes of patterning

are necessary to generate the organismal cell type

complexity.

Time is a fundamental parameter of life measured at

very different scales, from the milliseconds or seconds

of biochemical reactions to the minutes of the cell

cycle, the daily circadian rhythms and finally the mil-

lions of years of evolution. In developmental biology,

dynamic entities, such as cells and tissues, develop over

time relying largely on intrinsic timers that allow for a

cell-, tissue-, and species-specific developmental pace

[1]. Such timers can be based on oscillating gene

expression patterns that allow cells to change function

and role periodically over time [2,3] or on the succes-

sive expression of different genes [4]. An extreme, but

very efficient, example of this change is the temporal

patterning of neural progenitors, where they tempo-

rally express a series of transcription factors that

allows them to generate progeny with different fates

depending on their developmental age [5–7] (Fig. 1A).

The position of a cell in space, that is, along

the anteroposterior (AP), dorsoventral (DV), and left–
right (LR) axes of a complex organism, is another fun-

damental parameter, as the cell has to integrate its

environment and interact with its neighbors. Space in

and of itself, unlike time, cannot be intrinsic; every

cell’s position in space is defined by its environment

and neighboring tissue. During development, the influ-

ence of the environment on a cell or tissue is called

spatial patterning. This is often defined by the expo-

sure to different signals, such as morphogenetic cues.

An elaborate example of spatial patterning is the pat-

terning of neuronal progenitors along the DV axis of
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the vertebrate spinal cord, where opposing gradients

of Wnt and bone morphogenetic protein (BMP) from

the roof plate and Sonic Hedgehog (Shh) from the

floor plate, lead to the generation of spatially distinct

progenitor domains that can give rise to very different

neuronal types [8,9] (Fig. 1A).

Temporal and spatial patterning are two indepen-

dent modes of regulation; however, spatial patterns

can be products of molecular timers [10–12]. For

instance, segmentation in vertebrates and invertebrates

uses molecular clocks and morphogens to generate

spatial patterns that define the animal anteroposterior

axis [3,13]. Similarly, in plants, gene expression oscilla-

tion determines the periodic localization of lateral

roots [14] (Fig. 1B). While the importance of temporal

sequences in the formation of spatial patterns is

undoubted, very few examples have been recorded in

the literature where temporally expressed factors dis-

play also spatial patterns in a different context.

One remarkable example of this is the transcription

factor series of Hunchback (Hb), Kr€uppel (Kr), Pdm,

and Castor (Cas): this series is expressed in a temporal

sequence in the neuronal stem cells of the Drosophila

ventral nerve cord [15], but is also expressed in a spa-

tial sequence along the anteroposterior axis of the Dro-

sophila embryo at the cellular blastoderm stage [15]. In

addition, the same genes are expressed in a temporal

sequence in the segment addition zone of Tribolium

castaneum to regulate segment identity along the ante-

roposterior axis [16–18], as well as in the neural stem

cells of the ventral nerve cord (like in Drosophila) [19].

Finally, the vertebrate orthologs of three of these

genes (Ikzf1/4, Pou2f2, and Casz1) are expressed in

the same temporal manner in the vertebrate retina

neural stem cells specifying the descendant neuronal

types [20] (Fig. 1C).

Is this series a remarkable exception or the rule? Have

other temporal sequences been co-opted for spatial pat-

terning? In this Viewpoint, we will examine two promi-

nent examples of spatial patterning (one from vertebrates

and one from insects) and their relation to temporal

events, as well as present a more contemporary view of

morphogen activity in tissue patterning, based on the

duration of their expression. Conversely, we will examine

the expression of Drosophila temporal genes in space

and, finally, we will envisage an evolutionary scenario

that links temporal and spatial patterning.

The Hox clock

The most famous example of spatially distributed genes

is the Hox genes. In most bilaterian animals, Hox genes

form clusters of at least seven members, organized geno-

mically in a conserved order and transcribed collinearly

along the AP axis [21–23]. The “Hox clock” operates

during axial elongation in the posterior embryonic

growth zone of vertebrate embryos; Hox genes are tran-

scribed sequentially according to their genomic position

in the Hox cluster (temporal collinearity) [24]. As the

“Hox clock” coincides with axial elongation, this tempo-

ral collinearity is translated into a set of spatial coordi-

nates from anterior to posterior (spatial collinearity)

[25]. This positional information is then transferred to

the differentiated progeny, which contribute to tissue

expansion along the growth axis. The translation of

sequential Hox gene activation into spatial patterns in

developing axial tissues occurs in all vertebrates studied

to date [26].

Notably, the “Hox clock” provides also the mecha-

nism that ensures the spatial distribution of the pat-

terning information by regulating the timing of

mesodermal cell ingression. Progenitor cells that

express anterior Hox genes ingress earlier and occupy

more anterior positions along the body axis [27], while,

when the last genes of the cluster are expressed, they

inhibit the function of earlier HOX proteins, leading

to a slower extension of the axis, until extension is ter-

minated [28]. Importantly, after the progenitor cells

have ingressed, they maintain their Hox gene expres-

sion, allowing the establishment of stable spatial

Fig. 1. Temporal and spatial patterning in animals and plants. (A) Spatial patterning: The expression of BMP and Wnt from the dorsal roof

plate and Shh from the ventral floor plate leads to the generation of 11 spatial compartments (blue) along the dorsoventral axis of the

murine spinal cord. Each of these domains expresses a unique combination of transcription factors (dorsal: pink, medial: orange, ventral:

green) that allows it to generate different neuronal types. Temporal patterning: In a similar manner, the life of a Drosophila optic lobe

neuroblast is divided into (at least) 11 different temporal windows (blue). Each of these temporal windows expresses a unique combination

of transcription factors (early: pink, medial: orange, late: green) that allows it to generate different neuronal types. (B) Segmentation in

vertebrates uses molecular clocks to generate new segments along the anteroposterior axis of the animal. Similarly, in plants, gene

expression oscillation determines the periodic localization of lateral roots. Green signifies the cyclic expression of genes such as hairy, while

orange illustrates the cyclic activity of the auxin responsive promoter DR5. (C) The transcription factor sequence Hb/Kr/Pdm/Cas is

expressed in a temporal and/or spatial pattern in different tissues, such as the Drosophila ventral nerve cord and blastoderm embryo, the

Tribolium ventral nerve cord and segment addition zone, and the mouse retina. The color code of the transcription factors follows the one

from (A).
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domains [27]. Recent studies have provided insight

into how the proper timing of Hox gene expression is

regulated by enhancers that receive temporal signals at

the initial side of the cluster, and subsequent colinear

Hox gene expression is achieved by changes in the

restrictions imposed by chromatin structure [24,29].

Finally, it is possible that the “Hox clock” is molecu-

larly linked to the segmentation clock of the presomitic

mesoderm (PSM), which is driven by oscillations of the

Hes (Hairy/E(spl)-related) family of transcription fac-

tors to give rise to the future vertebral column (Fig. 1B)

[2]. The oscillating expression of several Hox genes in

the PSM is directly related to the segmentation clock,

and a shift in somite boundaries can lead to a reposition-

ing of Hox boundaries [30]. Furthermore, loss of Hoxb6

in the mouse embryo has been shown to lead to defects

in somite formation and the segmentation clock [31]. On

the other hand, evidence from zebrafish mutants in

which axis identity is maintained, but segmentation pro-

ceeds slowly, challenges the idea of a direct link between

the two processes [10,32].

Pair-rule and gap genes in insects

A prominent example of spatially expressed genes are

the gap, pair-rule, and segment polarity genes of

insects. First, gap genes drive AP axis determination

and later regulate the periodic expression of pair-rule

genes that mediate the segmentation along the AP axis

[33]. Segmental boundaries and regional identities are

finally maintained by the expression of the down-

stream segment polarity and Hox genes.

Insects were initially divided into long-germ and

short-germ insects depending on whether segment for-

mation occurs simultaneously or sequentially during

embryogenesis [34]. In the long-germ insect Drosophila

melanogaster, segments are formed during the blasto-

derm stage under the regulation of morphogen gradients

that cover the entire AP axis of the embryo. These

gradients are formed by the localization of maternally

deposited mRNAs, such as bicoid and hunchback anteri-

orly and nanos and caudal posteriorly. During this pro-

cess, gap and pair-rule genes are seemingly

simultaneously expressed in their respective domains

along the AP axis. However, in the short germ beetle

Tribolium castaneum, with the exception of a few ante-

rior segments, most segments form sequentially during

germ band elongation from a posterior growth zone

called the segment addition zone (SAZ) [33]. During this

process, gap and pair rule genes are expressed in a tem-

porally sequential manner in the SAZ, and only when

individual cells exit the SAZ, gap gene expression is sta-

bilized, leading to a spatial pattern of expression along

the AP axis. Other insects, such as Nasonia vitripennis,

employ an intermediate mode of segmentation [35,36],

suggesting that the long- and short-germ strategies pre-

sented above may in fact be the two extremes of a con-

tinuum, rather than two distinct mechanisms [34].

Indeed, modeling, live imaging and in situ stainings

of gap gene expression in the Drosophila blastoderm

have shown that gap gene expression regions are not

static over time but shift from posterior to anterior

[37–39]. The cells at the shifting boundary between

two domains switch from expressing one gene to

another, similar to their sequential expression in the

SAZ of Tribolium. Based on this, a non-periodic oscil-

lator [37] involving the Drosophila gap genes has been

proposed to underlie their spatial sequential expres-

sion, supporting further the idea that what has been

considered as spatial patterns in Drosophila has essen-

tially evolved from ancestral molecular clocks [17,40].

In addition, computational models in which segmenta-

tion and the pair-rule network were studied through

simulations, showed that segmentation in Drosophila

relies on pair-rule gene expression progressing across

cells over time, supporting previous quantitative stud-

ies and challenging the notion of pre-structured spatial

patterns at the whole-tissue level [41].

Fig. 2. Spatial expression of neuroblast temporal transcription factors in the blastoderm embryo. (A) The temporal transcription factors of

the Drosophila ventral nerve cord neuronal stem cells are expressed in a gap-like spatial pattern (green) in Drosophila blastoderm embryo. A

marked exception is the last temporal transcription factor, grainy head [55], which does not follow this pattern and is expressed in the head

epidermis instead. (B) The Drosophila optic lobe temporal transcription factors can be divided in three categories: (1) eyeless (ey) and BarHI

are not expressed in the blastoderm embryo and start to be expressed later. (2) odd-paired (opa), Dichaete (D), and tailless are expressed in

a spatially sequential pattern along the AP axis. Interestingly, D is expanded posteriorly in tailless (tll) mutants in a genetic interaction remi-

niscent of the optic lobe neuroblasts, where in a tll mutant, D expression is extended in time [56]. sloppy paired (slp1) is also expressed in a

spatially restricted pattern acting as a pair-rule gene [57]. (3) Finally, hth, Dll, Oaz, erm, hbn, and scro are expressed in the procephalic ecto-

derm. (C) Interestingly, the temporal genes hth, Dll, Oaz, erm (early), hbn (middle), and scro (mid-late) are expressed in the same spatial

order along the anteroposterior axis of the procephalic ectoderm in embryonic stages 4–8. The early temporal gene hth is expressed posteri-

orly in the procephalic ectoderm (as well as in the trunk). The early temporal genes Dll and Oaz are also expressed posteriorly. Then, the

later temporal genes erm, hbn, and scro are expressed progressively more anteriorly. Images from the Berkeley Drosophila Genome Project

(https://insitu.fruitfly.org/) [58–60].
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Temporal interpretation of morphogen
gradients

Morphogen gradients, despite being well-established

spatial organizers, have also been suggested repeatedly

to act in a temporal manner. Morphogen gradients

can pattern tissues based on the time of exposure of

the cells to the morphogen rather than based on the

morphogen concentration, as the traditional morpho-

gen gradient model suggests [42]. For example, chick

neuronal cells can interpret different concentrations of

Sonic Hedgehog as if there were proportionally differ-

ent time periods of Sonic Hedgehog signal transduc-

tion [43]. Moreover, the timing and sequence of spatial

gene expression in the mouse spinal cord depends not

only on the concentration of the external signal, but

also on the exposure time [44].

Similarly, the duration of exposure (and not concen-

tration) of human pluripotent stem cells to BMP signal-

ing determined whether cells will remain pluripotent or

whether they will differentiate to mesodermal or extra-

embryonic states [45]. Another prominent example of a

morphogen gradient is Bicoid; cells seem to be interpret-

ing duration of exposure to Bicoid on top of morphogen

concentration [46]. Interestingly, this temporal mode of

operation of morphogen gradients can lead to pattern

formation in unicellular organisms too. Colonies of

Escherichia coli can generate self-organized ring patterns

in the absence of a morphogen gradient, where the mor-

phogen serves as a timer to allow for the bacteria to

respond to environmental differences [47].

The speed regulation model was recently proposed

to reconcile the spatial and temporal activities of a

morphogen gradient; this model posits that different

concentrations of a morphogen can differentially mod-

ulate the speed of a temporal sequence leading to the

establishment of spatial patterns [10,17].

Evolution of spatial from temporal
patterns

Temporal transcription factor series have been

described in different contexts [48], but nowhere nearly

as comprehensively as in the Drosophila developing

optic lobe [49,50]. As mentioned earlier, the transcrip-

tion factors that are expressed temporally in the Dro-

sophila ventral nerve cord neuronal stem cells are also

expressed along the AP axis of the blastoderm embryo

like gap genes (Fig. 2A). Interestingly, many of the Dro-

sophila optic lobe temporal genes are also expressed spa-

tially along the AP axis of the developing procephalic

ectoderm (Fig. 2B,C), where early temporal genes

(homothorax – hth, Distalless – Dll, Oaz, and earmuff –

erm) are expressed more posteriorly than middle (home-

obrain – hbn) and later temporal genes (scarecrow –
scro).

The above raises a few questions and hypotheses:

First, how did the spatial patterns evolve from a

temporal series (or vice versa)? Notably, in the devel-

oping Drosophila optic lobe, static images of temporal

transcription factors expression appear as distinguish-

able spatial gene expression patterns, which are then

lost in the adult structure [49,50]. This suggests that

this temporal mode of patterning is conceptually anal-

ogous to the clock-based patterning of the anteropos-

terior axis in vertebrates and insects. In this case,

neuronal fate is fixed upon division of the progenitors

in a similar manner to the fixation of AP fate of the

cells that exit the SAZ or the PSM. This type of pat-

terning has been described as a wavefront-based model

[10,17]. The emerging possibility is that the ancestral

temporal gene expression was “translated” into a spa-

tial pattern, in a manner similar to the gap/pair-rule

gene spatial pattern in Drosophila that originated from

the temporal profile of a sequentially segmenting

ancestor.

Second, how has it occurred that the same genes

that are involved in temporal patterning of neuronal

stem cells pattern also the anteroposterior axis of

the embryo? Do these tissues share a common evolu-

tionary origin or were the gene regulatory networks

co-opted to regulate the expression of these transcrip-

tion factors in space? To answer this question, we

first need to understand how the temporal series of

the stem cells and the gap/pair-rule gene network

in the AP axis evolved and how the respective gene

regulatory networks were assembled [51,52]. Unfortu-

nately, only minimal information regarding these two

networks exists beyond the traditionally studied ani-

mal systems.

Finally, we would like to propose a scenario for

the evolution of tissue patterning: we have described

above how spatial patterns can arise from temporally

expressed genes, which makes the evolutionary trajec-

tory from temporal to spatial patterning particularly

compelling. Moreover, it is obvious that single-celled

organisms can pattern themselves in time, but not in

space (in the absence of a three-dimensional tissue

structure), in a manner similar to the aforementioned

patterning of E. coli [47]. To achieve this more effi-

ciently, it is possible that they used the sequential

expression of series of transcription factors that

allowed them to change their phenotype quickly and

drastically (since transcription factors can regulate the

expression of many gene batteries at the same time).

This would have allowed them to change their
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function over time, changing essentially their cell type

(or state), while adapting to a changing environment.

As more complex organisms evolved, existing temporal

sequences of transcription factors were used to pattern

the more complex tissues in space, allowing the organism

to have multiple different cell types at the same time.

This model of temporal-to-spatial transition has been

proposed before to explain the evolution of different ani-

mal cell types [53,54]. We believe that the discovery of

the same series of transcription factors in different organ-

isms (mice, beetles, and flies) and tissues (retina, embryo,

and brain) is in favor of this hypothesis.
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